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CHAPTZR I

INTRODUCTION

The first step in attempting t2 numerically solve a complex riuid
flow problem is to generate a grid system over the domain of interest,.
Then numerical techniques, sucn as finite difference, finite volume or
finite element methods are applied to solve the governing conservation
laws of fluid mechanics over tne domain. It has been snown that the
characteristics of a grid system used have significant effect on thae
accuracy and convergency of problem solutions, cf. Refs. [1, 2]. The
use of an improper grid system for a problem often results in diver-
gence or renders even a convergent solution useless.

A grid system in a physical domain of interest can be constructead
by first establishing coordinate points on all, or a portion of, the
boundaries of the domain and then solving for the ¢ cordinztes of nodal
points in the dcmain interior with appropriate methods, e.g., complex
variable metnods, algebraic methods or differential methods. These
nodal points, along with those on the boundaries, form grid cells,
Several characteristics of a grid system are very important as they
affect the accuracy and convergency of problem solutions. Clearly, it
is easier to construct a rectangular coordinate grid system because it
consists simply of straight lines. However, with rectangular coordinate
systems, the implementation of boundary conditions on bodies with com-
plex geometry is tedious. Interpolation between grid points or cells
near boundaries is necessary. This makes the generalization of the cod-
ing of numerical solution algorithms rather difficult. On the other

hand, with a curvilinear boundary-conforming grid system, one or more




of tne coordinate lines in the physical domain can be made go coincide
Witn the boundaries of the boay. Wwhen the system is transformed into a
computational domain with equal spacing, the computational algorithms
for solving the governing conservation laws, after they are transformed
onto the curvilinear coorainates, can be implemented without interpola-
tions at boundaries, Refs. [2, 3]. This approach greatly facilitates
the effort of coding solution algorithms. In addition, smoothness and
orthogonality are two well-kiaown desired characteristics, Refs. (1, 2J.
Smoothness, which is equivalent to minimization of the change of spac-
ing of grid cells, and orthogonality, which requires grid lines be per-
pendicular to each other, both tend to reduce errors in problem
solutions. Hence these characteristics should be maintained throughout
the grid system as far as 1is practical. This point will be discussed
in Chapter II.

In certain regions of interest, the gradients of certain param-
eters may be very high. If grid lines in these regions are not ade-
quate; i.e., if the spacings are too large, large truncation errors may
result. This is detrimental to both the accuracy and convergency of
problem soluticons. A uniform refinement of the grid network throughout
the entire domain would certainly reduce truncation errors. But often
in practical applications, the resources of computer memory and central
processing unit (CPU) time are limited and a uniform refinement of the
grid system may resault in adding grid lines in regions where it is ncot
needed. These constraints render the approach expensive. A more logi-
cal and economical alternative i3 to cluster more grid lines {n the

regions where high gradients take place and hence where high resolution




i3 needed. In the case o. simple fluia flow problems, the locations orf
high gradients may be estimated and a proper grid system mdy De con-
structed accordingly. However, for more complex fluid flcw problems,
high gradient regions are not known a priori, and the construction of a
proper grid system becomes very difficult. For example, in the area
where shocks occur, more grid lines are needed in order to resolve tne
shoexk location and the properties across the shock more accurately. But
the locations of the shocks are not known until the solution is ob-
tained. The ideal of solution-adaptive grid generation; i.e., gZenerat-
ing grid networks based upon certain solution information as the solu-
tion evolves, appears very attractive to the issue here, cf. Refs. [4,
5, 6, T].

Since Dywer, et al. Ref. [8], and Klopler and McRae, Ref. [9],
presented their works in the early 1980's, many techniques for generat-
ing adaptive grids nave appeared. Brackbill, et al. Ref. [6], devei-
oped a variational method for constructing an adaptive grid. Thompson
and Kim, Refs. [4, 5], implemented both a variational appro.:zh based on
the Euler equation for function minimization and a control function ap-
proach based on equidistribution of weight.

Kim investigated an adaptive grid around an ONERA M6 wing with the
control function approacn. Promising results were obtained, and the
grid clustered to where the shock was located. The flow solver section
of Kim's code, however, was constructed such that grid blocks must be
arranged in a straight sequential ranner; i.e., the front of a second
block must be connected to the back of a first block, and the front of

a third block must be connected to the back of the second block, and so




on. This severely limits applicability of the code. In the present
work, tnis limitation was removed by coupling a flow solver with an
arbitrarily blocking structure, Ref. ([10]. Furthermore, in Ref. [4],
the construction of control functions for adaptive grid generation was
based upon an initial grid and gradients of a parameter of a flcw
field. A different construction of control functions based upon a cur-
rent grid and flow gradients was used in this effort, This point will
be discussed in Chapter II. A very brief review of elliptic grid gen-
eration with control functions, upon which this work is based, and the
truncation errors associated with the quality of a grid system is also
presented in Chapter II. In addition, a brief description of the EAGLE
grid code, Ref. [16] and the EAGLE flow solver, Ref. [10], which were
employed in this work to construct the sclution-adaptive grid code, is
given in Chapter V as well. This control function approach for solu-
tion-adaptive grid generation, with the modifications mentioned above,
was tested with two complex three-dimensional blocked configurations at
transonic region, namely, an eight-block finned body of revolution and
a thirty-block multi-store configuration. The results are discussed in
Chapter III. Concluding remarks and recommendations are contained in

Chapter 1V,




CHAPTER II

SOLUTION-ADAPTIVE GRID GENERATICN

Numerical simulation of an aerodynamic problem typically consists
of generating a grid network on the physical domain of interest and
then applying a partial differential equation (PDE) flow solver over
the grid to obtain solutions. Furthermore, a curvilinear grid system
WJith some coordinate constant on each segment of the physical boundary
curve or surface is usually preferred for more accurate representation
of boundary conditions, Ref. [1]. This boundary-conforming grid can be
generated by first specifying values on the boundaries and then deter-
mining the c¢oordinates in the domain interior from the boundaries.
Often the application c¢f a PDE flow solver is performed in a trans-
Tormed computational domain where uniform rectangular blocks are
formed. For simplicity, unit increments are usually used in each di-
rection of the computational domain. The equivalent problem in grid
generation is then to determine the Cartesian coordinates (or other
type coordinates) in the interior of the computational domain from
specified values and/or slopes on the boundaries of the domain. This
is illustrated for a two-dimensional case in Figure 1.

The determination of interior coordinates in a region can be ac-
complished by either of the following approaches. First, the interior
coordinates can be obtained by simply interpolating values from bounda-
ries which have been specified. The grid generated in this manner is
generally referred to as an algebraic grid. On the other hand, the
problem can be treated as a boundary-value problem. Hence the solution

of a system of partial differential equations can be used to determine




the coordinates of interior points, Ref. [11]. If an elliptic partial
differential system is used, all the values at boundaries of a domain
must be specified. If a parabolic or a nyperbolic system is used, only
a portion of the boundary points needs to be specified. In this study,

only elliptic grid generation systems are considered.
II.t Elliptic Grid Generation

From Refs. [12,13], if a curvilinear coordinate systen, Ei
(i=1,2,3), which satisfies the Laplace system V2€i=0, (i=1,2,3) is
transformed to another coordinate system ai, (i=1,2,3), then the new

curvilinear coordinates &i satisfy the inhomogeneous elliptic system

2_1 i

Vg =P (i =1,2,3) (1I1-1)
where
\ 3 3 .
el ) ngP;k (11-2)
j=1 k=1
jk J k . , : .
and g = Vg” . Vg is the contravariant metric tensor (I1-3)
Here
i S Y TRl
ij = ) ) 3 X —m.— (I1-4)
m=1 n=1 3§ 3 9E of

which arises due to the transformation from Ei to &1. A grid genera-
tion equation can then be defined from equations (II-1) and (II-2):

3 3 ;

2.1 k. i

L gtk

vl = )
ja1 k=1 Jk

(i=1,2,3) (1I-5)




Zquation (II-5) implies that a coordinate system is generated wnich
corresponds to the application of a stretching transformation to the
coordinate system generated for maximum smoothness.

Actually, Pﬁk is to be specified rather than obtained through a
subsequent transformation. In practical applications, it is the
Cartesian coordinates Xy, (i=1,2,3) that are to be sought in the trans-
formed uniform field. Hence Eq. (II-5) should be rewritten with Car=

tesian coordinates as dependent variables. Carrying out the transfor-

mation of Eq. (II-5), Ref. [13], and setting V22=0 yields

3 3 ij 3 k
PR () Piy E (=0 (1I-6)
i=1 j=1 g'ed k=1 £

where r is the position vector. If one considers only one-dimensional
stretcning in each coordinate direction, the control function can be

further simplified as

where 5} = 1 if i=j and O otherwise. With this simplification, Eq.

(II-6) becomes

3 3 ., 3
L 1 eV {1t L gkkpkg L =0 (1I-7)
j=1 j=1 gtgd ke £

In this work, the concept of solution—adaptive grid generation is in-
vestigated by formulating a definition of the control function P, in

Eq. (II-7) in terms of flow parameters from PDE flow solvers.




I1.2 Truncation zrror

As noted above, a grid system must be generated before numerical
simulations of fluid flow can be performed. Since the solution is not
known a priori, it is very difficult to generate a grid system optimal
to the problem at hand. The accuracy of numerical simulations is sig-
nificantly affected by the truncation error, which is inherently intro-
duced into the flow solution algorithms when the derivatives in the
governing fluid flow equations are represented by finite difference or
finite volume approximations. Therefore when a grid network is gener-
ated, attention should be given to minimizing the truncation errors. In
Refs. (1,14], Mastin has considered the following first derivative in

one dimension:

£
£, = £ (11-8)
£

solution function
Cartesian coordinate
curvilinear coordinate

wnere

™y

With a central difference for f& and Xg Eq. (III~-1) can be written as,

with ag=1,

L. - f.
i+1 Sl B

1
X101 7 X

where the truncation error T can be reduced to the following form:

T = - 1 x. .f -

1
2 EQ XX E f (11‘9)




If the point distribution of the grid system is fixed, it can be shown
that the error represented by Eq. (II-9) is second order and is propor-

2, where N is the number of grid points, Ref. [1]. This

tional to 1/N
means that the error will be quartered when the number of grid points
is doubled. On the-other hand, if the number of grid points is fixed,
the second term in (II-9) represents a power of the spacing. The in-
tent of a change of point distribution is then to decrease the local
spacing where the local gradient of a flow parameter is large. Conse-
quently, the spacing must increase where the local gradient is rela-
tively small. The first term in Eq. (II-9) is proportional to tne sec-
ond derivative of the solution and hence is diffusive. This term also
contains the term xggv the rate of change of the grid-line spacing.
This indicates tﬁat the changes in grid spacing should be kept small,
because large changes in_grid-line spacing will introduce significant
truncation errors. Mastin has also shown that the truncation error due
to nonorthogonality is inversely proportional tc the sine of the angle
between two curvilinear coordinates, Ref. [14]. Therefore, in order to
minimize truncation errors, it 1is necessary to maintain orthogonality
throughout the grid networks as far as is practical. At bdoundaries,
orthogonality becomes more important because one-sided difference ap-
proximations are often applied, and in the case of viscous flow, the
thin layer turbulence modeling are logically constructed in the direc-
tion normal to the boundaries, Ref. [15]. There are two different ap-
proaches employed in this study to achieve the grid orthogonality at
boundaries. In the first approach, the slope of grid lines at the
boundaries is iteratively adjusted to be orthogonal while the locations

of grid lines at boundaries are fixed, Ref. [14,16]. In the second




approach, the grid points at the intersections of grid lines with the
first line or surface off the boundaries are fixed and then the grid
lines are allowed to relocate with orthogonality at the boundaries,
Refs. [4,14,16,17].

The':ask of generating grid networks with reduced truncation er-
rors based upon known solution information; i.e., solution-adaptive
grid generation, can be accomplisned by either adding additional grid
lines or clustering existing grid lines to the regions where high gra-
dients of flow parameters in the field occur. In this work, the solu-
tion-adaptive grid generation technique is investigated with grid
networks of fixed numbers of grid points, using the control function

approach as indicated in Eq. (II-7).

II.3 Control Function Approach

The basic idea of solution-adaptive grids is to reduce errors by
generating grids with grid cells that contain equal amounts of some
positive weight function, Refs. [4,5,6,18]. In one dimension, equidis-
tribution occurs when the spacing between grid points is inversely pro-
portional to the weight. In differential form, assuming a
transformation from a curvilinear coordinate to the Cartesian coordi-

nate along a given curve, this can be written
W(x) dx = ¢ d§ (11-10)

where W : weight function
¢ : proportional constant

10




In the transformed uniform space in ¢, d§ is viewed as a constant. The
desired spacing is then obtained when the spacing shrinks or expands as
the weight function W(x) increases or decreases, respectively. Inte-

grating Eq. (II-10) over a cell,

(xi+1 [£i+1
J w(x) dx = ¢ ] dg = c(&i+1 -£,) (I1-11)

1
X. ;
1 El

where £i+1 - Ei = constant

Eq. (II-11) states that the total weight over each cell is kept con-

stant. In discrete form, Eq. (II-11) becomes

W (x

- xi) = constant (I1-12)
i

i+

N

+ W)

(wi+1 i

where W =

X
1 2
7

Here again, if the weight function is large, X{41 and X4 approacn each

other. From Eq. (II-10), we have

W(x) XE = constant (II-13)

Differentiating with respect to §, we get

xaaw + xewE =0 (II-14)

Rewriting the general three-dimensional elliptic equation (I1I-7) in one

dimension,

XEE + P xE =90 (II-15)

From Eqs. (II-14) and (II-15), we obtain

1"




X A
p=-—8._% (II-16)

as the control function in terms of weight function and its derivative.

Extending Eq. (II-16) to all three directions, Refs. [19,20],

W
&) .
Pl = r (l=1'213) (II-17)

The complete generalization of (II-16) is, as given by Eiseman, Ref.

r181,
3.t M
P, = L J7—— (=1,2,3) (II-18)
Jj=1 g i

This definition of the control functions involves the derivatives of
the weight function in three directions, with each weighted by its cor-
responding contravariant metric tensor elemenﬁ gij. This provides a
convenient means to specify three separate ccntrol functions. For in-
stance, one may specify the pressure gradient as the weight function in
one direction and the velocity gradient in another. Equation (II-17)
is in fact the diagonal terms of Eq. (II-18). When the pressure gradi-

ent is used to define the weight function, it can be written
W=1+|Vp| (I1-19)

The pressure gradient term in the above equation tends to concentrate
more grid lines in the high pressure gradient region, while the 1 tends
to produce equal spacing, Ref. [14].

Wnen a grid system is generated using the elliptic equation
(II-7), a set of control functions can be generated based upon the geo-

metrical characteristics of the grid, Ref. [1]. If only the control

12




7

functions based upon gradients of flow parameters are used to regener-
ate a new grid, then the geometrical characteristics of the existing
grid will be lost. In order to preserve the geometrical characteris-
tics of the existing grid, it is logical to construct useful control
functions in such a manner that the control functions defined in Eq.
(II-18) be a correction factor to the previous set of control func~

tions, i.e.,

Poo = (Pyiiiay )y * 0 (P) (1=1,2,3) (11-20)
geometry

where Pinitial : control function based on initial grid

geometry

Pwt : control function based on gradient

-

c, : constant

The constant ¢ is to be specified to weight the control function based
upon gradients. Referring to Egs. (II-7) and (II-20), the elliptic

system used to generate the solution-adaptive grid is then

3 3 . 3
IoLogde, o+ gkkPin)g L =0 (11-21)
ia1 j=1 g kat £

which 1is solved by the point over-relaxation method to generate new
adaptive grids, Ref. [16]. The superscript (n) in Eq. (II=21) is the
sequential number of grid adaptations. During the investigation, how-
ever, it was found that for a given set of weight constants; i.e., the
cy's in Eq. (II-20), the progress of grid adaptation was relatively
slow. A different construction of the control functions based upon the
current grid rather than the initial grid and the flow gradients was

tried. This can be formulated as follows.
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(1) (2)

< (0) .
Po = CPinseiar 71 ¥ %1 Pud) (i=1,2,3)
geometry
P2 e el e e Y (i=1,2,3) (11-22)
(n) (n-1) (n=1) .,
P, =Py + ci(Pwt) (-=1.2.3)

where the superscripts indicate the sequential number of grid adapta-
tions. The P§1), sz), oo Pgn) are then control functions correspond-
ing to the 1st, 2nd, ... nth adaptive grids respectively. It was found
that the progress of grid adaptation based upon Eq. (II-22) is much
morz2 efficient than that based upon Eq. (II-20). This will be demon-
strated ih Chapter III.

The iterative process of solution-adaptive grid generation is im-

plemented as follows:

Initial Algebraic Grid

» Elliptic Grid —1

1 (Flow Solver Integration)

Flow Solver l
Select Flow Parameter

New Control Function

—— (Adaptive grid iteration)
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Since in this work the solution-adaptive grid generation code was con-
structed by coupling the EAGLE (Eglin Arbitrary Geometry ImpLict Euler)
grid and flow codes, Refs. [10,16], brief descriptions of the features

of these codes are in order here.
II.4 EAGLE Grid Code

The EAGLE grid code, Ref. [14] is a general three-dimensional el-
liptic grid generation code based on the block structure with contreol
function approach. This code allows any number of hexahedronal blocks
to be used to fill an arbitrary three-dimensional physical region, with
each of the hexahedronal blocks corresponding to a rectangular computa-
tional block. This composite-block structure of the code is very flex-
ible. A block can be connected to other blocks through entire or
partial sides of the corresponding blocks, or to itself, with complete
ccentinuity, with slope continuity, with only line continuity or discon-
tinuity across the interfaces between connecting blocks. Except in the
case of discontinuity, all the connecting blocks must have the same
number of points on their common interfaces, In the case of complete
continuity, the interface is a branch cut and a correspondence across
the interface in terms of object points and image points, Ref. [1], is
established by using an extra layer of points surrounding the cor-
responding blocks. This allows the points on the interface to be
treated as all other points so that the continuity is retained. The
physical location of the interfaces are thus totally unspecified, being

determined by the code.
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The elliptic characteristics of a mesh is achieved by using con-
trol function approach, Ref. [1]. The control function can be evalu-
ated either from the initial algebraic grid and then smoothed, or by
interpolation from the boundary point distributions. In the latter
case, the arc length and curvature contributions to the control func-
tions are evaluated and interpolated separately into the mesh from the
appropriate boundaries, and the control function at each point in the
mesh is then formed by combining the interpolated components. This
procedure allows very general regions, with widely varying boundary
curvature, to be treated.

The boundary orthogonality can be achieved by Neumann boundary
conditions, Ref. [1], which allows the boundary points to relocate over
a surface spline. The new locations of the boundary points are deter-
mined by Newton iteration with the grid lines normal to the surface
spline. Alternatively, the boundary orthogonality can be achieved by
iterative adjustment of the slope of a grid line until the grid line is
normal to the surface. In the latter case, the location of the grid
point on the surface, however, is fixed, Ref. [1]. The Neumann bound-
ary approach was employed in this study to obtain both orthozonality

and solution-adaptive grid.
II.5 EAGLE Flow Code

The EAGLE flow code is a three-dimensional unsteady Euler fluid flow
solver capable of simulating aerodynamics around complex three-dimensional
geometries with composite-blocked grid systems, Ref. [10]. The governing
equations of the FAGLE flow code are the three-~dimensional time-dependent

Euler equations, which consist of the conservation laws of mass, momentum
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and energy, and the equation of state of an ideal gas. For the advan-
tage of boundary-conforming grids and the simplicity of performing com-
putations in uniform space, the equations are scaled and transformed
onto a three-dimensicnal curvilinear coordinate system. An implicit,
finite volume, upwind, flux-vector of flux-difference split, approxi-
mate factorization numerical technique is then applied to solve the
equations, Ref. [10]. A solution is obtained by a two-factor scheme
which consists of solving a spare block lower triangular matrix sys-
tem with forward substitution followed by solving a spare block upper
triangular matrix system with backward substitution through the com-
putatiunal domain. Various boundary conditions, such as impermeable
surface, farfield subsconic or supersonic inflow/outflow were imple-
mented to facilitate the simulation of physical boundary conditions.
The interface of a blocked grid system is treated in terms of phantom
or image points, Ref. [10]. The dependent variables corresponding to a
block interface are stored and made available for the adjacent block
when they are needed. For steady state solution, the dependent vari-
ables at the interface are unsynchronized; i.e.., the code takes what-
ever time level values are present when they are needed. Numerical
results obtained so far has shown that for steady state solution,
there appears to be no degradation in convergence or stability, Ref.
[i9]. In this work, the flux-difference split option of the flow code

was used.
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CHAPTER III

RESULTS AND DISCUSSION

The solution-adaptive grid generation technique with the control
function approacn as described in the previous chapter was tested with
two complex three-dimensional multiple-blocked configurations at tran-
sonic flow conditions: (1} an eight-block finned body of revolution
at an angle of attack of 12 degrees with a Mach number of 0.95, (2) a
thirty-bplock multiple-store ogive-cylinder-ogive configuration at an
angle of attack of zero degree with a Mach number of 0.95. The results

obtained are discussed in the following sections.

III.1 Finned Body of Revolution

The structure of tne grid system used for thne finned body of revo-
lution was generated by using the EAGLE surface generation code, Ref.
(21] and tne EAGLE grid generation code, Ref. [16] and is shown in Fig-
ures 2 through 5. Figure 2 shows the outer boundary of the grid and
the location of the body within the grid, while Fig. 3 shows the grid
on the surface of the body and that extenced from the body toward the
outer boundary. rigures 4 and 5 show the detailed view of the grid at
the nose section and tail section of the body, respectively. In Fig.
5, the fins were removed for clarity. The grid consists of eight
blocks: four blocks in the nose section and four blocks in the tail
section, with four fins located circumferentially at angular intervals
of 90 degrees. Each block was dimensioned 69x25x13. The elliptic op-
tion of the grid generation code was used to generate the initial grid

with Neumann boundary conditions specified on the nose section of the
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body, except for several grid lines in front of the leading edge of the
fins which intersect the body at an angle of about 55 degrees and ren-
der the application of Neumann boundary conditions inappropriate there,
Ref. [16]. Except for these Neumann boundary points, all the grid
points on the solid surface of the body are fixed points, Ref. [10].
This can be seen in Figs. 4 and 5. This grid system is a modified ver-
sion of that used in Ref. {[22]. The differences are that the grid
lines are uniformly distributed in the circumferential direction here,
and that the orthogonality of grid lines is maintained at the surface
as described above.

The aerodynamics around the body was first solved without using
the solution-adaptive technique and then with the solution-adaptive
technique. Comparison was then made between the two results. The
pressure and Mach contours with the initial grid at an angle of attack
of 12 degrees and a Mach number of 0.95 after 1000 iterations with
CFL = 4.0 are shown in Figs. 6 and 7. In these figures, the fins are
again removed for clarity. It is clear that there is a matrix of
shocks around the body. A strong shock occurs at the leeward siae of
the nose section and its strength decreases in the circumferential di-
rection toward the windward side. There is a lambda shape shock at
about the middle of the upper tail section. There also are shocks
around the base of the body. The glitch line starting from the june-
tion between the nose and tail section toward the outer field with an
angle of about 55 degrees is due to the deficiency of the plot rou-
tine used. Similar glitch lines present in almost all the contour

plots reported in this work and are due to the deficiency of the plot
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routine used. The solution-adaptive grids based upon Eq. (II-20) in
Chapter II, using pressure gradients as weight functions, at the same
flow conditions; i.e., Mach = 0.95, alpha = 12 deg. were obtained at
200, 300, 400, 500, and 600 iterations of flow solutions with the con-
centration constant ¢ = 5.0.. The f£ifth adaptive grid, i.e., the one
obtained after the 600th iteration is displayed in Fig. 8. It can be
observed that only slight clustering of grid lines occur in response
to the shocks in the flow field. This is not very effective,

The case was repeated at exactly the same flow conditions, except
that Eq. (II-21) was employed in constructing control functions. The
solution~adaptive grids as before, were obtained with the concentration
constant ¢ = 5.0 at 200, 300, 400, 500, and 600 iterations and are dis-
played in Figs. 9 thru 13, respectively. When compared with Fig. o6 or
Fig. 7, it is clear that the grid lines are gradually clustering around
areas where shocks occur in the flow field. Figure 14 shows the aetail
of the adaptive grid at the ncse section with five adaptations. The
grid lines cluster more closely on the leeward side of the body and
then gradually relax the clustering effect 1in the circumferential di-
rection toward the windward side of the body. This is exactly in re-
sponse to the characteristics of the shock that occurred in the flow
field. Around the frontal area of the nose section, the grid lines
move toward the body in response to the high pressure gradients occur-
ring around the area. This can be observed in Fig. 13 or Fig. 14, Fig-
ure 15 displays a close-up of the adaptive grid at the shock. It is

interesting to note that in this test case the spacing of the adaptive
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grid lines at the shock is approximately one-tenth of that of the ini-

tial grid. In addition, the orthogonality of the grid lines at the
solid surface is maintained where Neumann boundary conditions were ap-
plied. The details of the fifth adaptive grid at the tail section are
shown in Fig. 16. Here again, the clustering of the grid lines occurs
at the middle of the tail section and the base of the body, in response
to the shocks there. Although from Figs. 6 and 7, there are small
shocks between the lambda shock and the shock at the base, the grid
lines there do not appear to cluster effectively. This is most likely
due to the fact that the strengths of these shocks are weak relative to
those at the middle section and the base., The flow solver calculation
was carried out to 1000 iterations with the fifth adaptive grid. The
corresponding pressure contours are spnown in Fig., 17. Compared with
Fig. 6, 1t can be observed.that the shocks are more clearly defined
with the adaptive grid. This can be moré easily seen in Figs. 18 and
19, which display the shock in the leeward side of the nose section
with the initial grid and with the adaptive grid respectively.

In Fig. 18, the shape of the shock is not well defined. The width
of the shock is wide while in Fig. 19, the shape of the shock is much
more clearly defined. The width of the shock is much more narrower.
This clearly demonstrates the advantage of the adaptive grid over the
non-adaptive grid that with adaptive grid the simulation of the aerody-
namics is much closer to the reality. The pressure contours on the
surface of the nose section with the initial grid and with the adaptive
grid are shown in Figs. 20 and 21 respectively. Again, the width of

the shock with the adaptive grid is narrower than with the initial
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srid. As mentioned before, the apparent glitcn line at the middle of
the body in the axial direction in Figs. 20 and 21 is due to the defi-
ciency of the plot routine used.

IL 18 also ooserved that the shape of the lambda shock at the mid-
dle of the tail section is more clearly defined with the adaptive grid,
Fig. 6. The corresponding Mach contow is shown in Fig. 22, As in the
pressure contour plots, the shocks are mere clearly defined with the
adaptive grid. Figures 23 and 24 show the detail of the frontal shock
with the initial grid and with the adaptive grid, respectively. In
Fig. 24, it can be observed that the shock is much more clearly defined
on both the leeward side and windward side of the body. The movement
of the grid lines on the body clearly reflected the characteristics of
the variation o the pressure distribution, or equivalent Mach number,
on the surface of the body. Tﬁroughout all the Figures that displayed
grids, it can be obhserved that all the transitions of grid lines at tne
interface of adjacent blocks are very smooth. For example, in Figure
14, which shows the adaptive grid at the nose section with five adapta-
tions, the seventh line from the top of the body in the circumferential
direction is an interface between two blocks. The adaptive grid lines
there cross the boundary very smoothly.

The calculated pressure distributions at various azimuthal loca-
tions along the body with and without the adaptive grids are plotted
versus experimental data in Figs. 25 thru 30, whlle the
pressure distributions along the fins are shown in Figs. 31 thru 38.
Examination of the pressure distributions shows that although the adap-

tive grid does yifeld a much <clearer definition of shocks in the flow




€ield, the pressure distributions with the adaptive grids in general do
not differ significantly from that witn the initial grid in this test
case. This can be attributed to the fact that although the initial
grid is not sufficient to yield a good definition of shocks, it appears
adequate to yield reasonavly good pressure distributions. Very similar
observations can te made from the pressure distributions along the fins
as shown in Figs. 31 thru 38. It is interesting to observe that be-~
cause the body is at an angle of attack of 12 degrees and flow expands
on the upper side of the fin surfaces, the effect of the adaptive grid
is more readily observable on the upper side than on the lower side of
the fin surfaces, as evidenced by comparing Figs. 35 and 37 with Figs.
36 and 38.

The density residual convergence histories for blocks one thru
four and blocks five thru eight are shown in Figs. 39 and 40 respec-
tively. The grid adaptation does cause disturbances in the residual
convergence histories. The disturbances, however, diminish rapidly
after several cycles of flow solution integration and do not adversely
affect the overall residual convergence histories. Hence, attempts to
do any averaging process on the flow variables for the newly generated
adaptive grid do not appear necessary for steady state solutions, The
extra central process unit (CPU) time needed for five adaptations was

about 3.4% over that of the non-adaptive approach in this test case,
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III.2 Multiple-3tore Configuration

A more complex multiple-store configuration was also used to test
the solution-adaptive grid generation technique. It consists of three
ogive-cylinder-ogive stores. But, due to the symmetry of the configu-~
ration, only one~half of the configwation needed to be gridded for
flow solution calculations, Ref. ({23 ;. The grid system consists of
thirty blocks. Figures 41 and 42 show the perspective view and Fig. 43
shows a cross sectional view of the composite grid system. Figures 44
and 45 show a perspective and a frontal view of the stores respec-
tively. In reference to Fig. 46, which shows a cross sectional view of
the configuration, the store at the upper right hand location is re-
ferred to as store 1 and the one at the middle location is referred to
as store 2. Various sections are also indicated here for later refer-~
ence. The configuration was tested at an angle of attack of zero degree
with a Mach number of 0.95. In the following, the results obtained are
discussed in reference to the various sections indicated in Fig. 46.

Figure 47 shows the initial grid at Section A-A. The pressure and
Mach contours with the initial grid at 400 iterations of the flow
solver calculation are displayed in Figs. 48 and 49. It is clear that
a strong shock i{s located at the base of store 1. Here again, the
glitch lines that appear on these contour plots are due to the defi-
ciency of the plot routine used. Then the solution-~adaptive grid gen-
eration technique was applied. Adaptive grids were obtained at 80,
120, and 160 cycles of the flow solver calculations and are shown in
Figs. 50, 51, and 52 respectively. It is readily observable that the

grid lines cluster at both the base and the nose of the store in
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response to high pressure gradients in the areas. The corresponding
pressure and Mach contours obtained at 400 cycles of the flow solver
calculation with the third adaptive grid are shown in Figs. 53 and 54,
It can Dbe observed that the width of the shock 1s narrower with the
adaptive grid. Hence, the adaptive grid does improve the quality of
the simulation of the flow field. The calculated pressure distribution
along the store at two locations namely, phi = 0 Deg and phi = 220 Deg,
are displayed versus experimental data, in Figs. 55 and 56
respectively. It is observed that the pressure distribution with the
adaptive grid does not significantly differ from that with the initial
grid. This is attributed to the fact that the initial grid is adequate
for prediction of pressure distribution in this case.

The initial grid at Section B~-B (see Fig. 46) is shown in Fig. 57
while the corresponding pressure and Mach contours are shown in Figs.
58 and 59 respectively. Strong shocks occur at the base area above,
between and below the stores. The solution-adaptive grids at 80, 120,
and 160 cycles are displayed in Figs. 60, 61, and 62 respectively.
Again, the grid lines cluster in response to the pressure gradients in
the flow field. The corresponding pressure and Mach contours are shown
in Figs. 63 and 64. When compared with Figs. 58 and 59, the narrowing
of the width of the shocks due to the effect of the adaptive grids is
readily observable.

The initial grids of Sections C-C, D-D, E-E, and F-F, (see Fig.
46) are shown in Figs. 65, 67, 69, and 71 respectively, while the corre-
sponding adaptive grids with three adaptations are displayed in Figs.

66, 68, 70, and 72 respectively. It is evident from these figures that
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the solution-adaptive tecnnique works very well. The extra CPU time
needed for the calculation of the three adaptive grid generations, in

this case, was about 8% over that without grid adaptation.
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

In attempting to numerically simulate fluid flow around vehicles,
it is necessary to first generate a grid network over the domain of in-
terest, and then a PDE flow solver is applied with thne grid to obtain
solutions. An appropriate grid system, however, is difficult to gener-
ate because the flow solution in a domain is not known a priori. A so-
lution-adaptive grid generation technique capable of generating a
proper grid network based upon solution information as the problem so-
lution evolves appears very desirable. In this study, a solution-adap-
tive grid generation technique based upon an elliptic system with
control functions has been investigated. The control functions are
first evaluated by using the geometry of the initial elliptic grid, and
then are corrected by a weight function based upon pressure gradients
in the field provided by the flow solution. The elliptic grid genera-
tor with updated control functions is then applied to regenerate a new
grid with more grid-line clustering around high pressure gradient re-
gions in the flow field. The computation of the flow solution contin-
ues with the newly generated adaptive grid. The grid generation and
the flow solver codes have been coupled together so that solution-adap-
tive grids can be generated automatically without any manual manipula-
tion. The coupled computer code has been implemented on a CRAY-2
computer system. Orthogonality may be specified in some desired
regions in a grid, while smoothness {s implicit in the elliptic equa-
tions. The application of the code has been demonstrated by the two

test cases presented in this study, namely, an eight-block finned body
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of revolution and a thirty-block multiple stores configuration. The
results obtained have shown that the solution-adaptive approach does
provide improved grids for the problems.

The applicability of the code can also be extended. For instance,
the control function can assume the form of a combination of pressure
gradient and other flow parameters, such as velocity gradient or den-
sity gradient. Furthermore, different concentration factors can be
given to each individual flow parameter in different coordinate direc=
tions. For example, it is conceivably advantageous to assign more
weight to pressure gradients in the streamwise direction and to ve-
locity gradients in the direction normal to solid surface boundaries,
if a thin-layer Navier-Stokes type flow solver is employed. The deter-
mination of the concentration factors and the number of adaptations,
however, is still empirical. It would be worthwhile to develop an in-
telligent expert system which is capable of autcmatically determining
the concentration factors and number of adaptations over a wide range
of flow conditions to increase the robustness of the approach.

In conclusion, the solution-adaptive grid generation technique
does provide proper grid networks for fluid flow simulations and should

be an integral part of future computational fluid dynamics.
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Shock with Five Adaptations - Mach Contour
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Figure 41. Perspective View of the Structure of Thirty Blocks
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Figure 45. Frontal View of Multiple Store Configuration
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